The Crystal Structure of Nickel Etioporphyrin II

By M. B. Crute*
Crystallographic Laboratory, The Johns Hopkins University, Baltimore 18, Maryland, U.S.A.

(Received 20 January 1958 and in revised form 15 July 1958)

Abstract

Crystals of nickel etioporphyrin II are tetragonal or twinned-orthorhombic, pseudo-tetragonal, with $a=14 \cdot 6_{8}, c=12 \cdot 5_{1} \AA$. The space group appears to be $I 4_{1} / a m d$ with $Z=4$. From data obtained at room temperature a structure has been deduced which yields $R=0.24$ for 132 non-zero reflections. The structure has 15 parameters, excluding those for hydrogen. Flat molecules, related by a 4_{1} axis, lie with their mean planes parallel to (001) at heights $\frac{1}{8}, \frac{3}{8}, \frac{5}{8}$, and $\frac{7}{8}$. The Ni atoms lie upon sites of symmetry $\overline{4} m 2$ with the $\mathrm{Ni}-\mathrm{N}$ bonds in mirror planes $\{100\}$. By random distribution, enantiomorphous molecules acquire a statistical symmetry not inherent in the individual molecule. A rapid decline of intensities with increasing 2θ, which drastically limits the number of observed reflections, leads to abnormally high, anisotropic 'temperature factors'. The magnitude of these factors is ascribed to disorder.

Experimental

The crystals of nickel etioporphyrin II, $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{Ni}$ (Fig. 1), were prepared by Dr Winslow Caughey. They are very soft, opaque, tetragonal dipyramids $\{101\}$, pseudo-octahedra, 0.05 to 0.10 mm . on an edge. They are deep purple with vitreous luster, and very thin fragments weakly transmit red light. The material decomposes in the solid state at approximately $350{ }^{\circ} \mathrm{C}$.

Using $\mathrm{Cu} K \alpha$ radiation, precession photographs were taken of reciprocal-lattice nets containing the reflections $h k 0, h 0 l, h k 1$, and $h h l$. Cell dimensions obtained from these photographs are:
$a=14 \cdot 6_{8}, c=12 \cdot 5_{1} \AA$. The cell volume is $2696 \AA^{3}$.
No single crystal was large enough for its density to be determined on the Berman balance, and the total quantity of crystals available was insufficient for a pycnometric determination. By flotation in $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ solutions, a value of $\varrho=1.5 \pm 0 \cdot 2$ g.cm..$^{-3}$ was obtained. With $Z=4$, the calculated density is $1.37 \mathrm{~g} . \mathrm{cm} .^{-3}$.

Within the limits of visual observation, reflections $h k l, k h l, \bar{k} h l$, and $h \bar{k} l$ have equal intensities (to within $\pm 10 \%$) so that the Laue class is taken as $4 / m, 2 / m, 2 / m$. The space group is then uniquely determined by the following conditions for reflection:

$$
\begin{aligned}
& h k l: \quad(h+k+l) \text { even } \\
& h k 0 ; ~ \\
& h h l: \quad(2 h+l) \text { even } .
\end{aligned}
$$

The multiplicity of the general position is 32 .
Equi-inclination Weissenberg photographs of nine levels perpendicular to the c axis were taken with $\mathrm{Cu} K \alpha$ radiation. Exposures of 36 to 60 hours were necessary. Trial exposures for longer periods failed to yield additional reflections. Three films were used, and

[^0]intensities were measured on an arbitrary scale by visual comparison with a calibrated strip prepared using the same crystal. The collimator aperture was 1 mm . No diffuse background was observed except for a possible elongation of spots in the [001] direction which is difficult to distinguish from an elongation always present due to some back-lash in the camera used. There are 952 possible reflections in the region of reciprocal space covered by the photographs taken. Reflections were obtained only out to $\theta=48^{\circ}$ which limit encompasses 309 possible reflections. Only 138 of these reflections were observed at room temperature. Lorentz-polarization corrections are applied. In view of the small size of the crystal, about 0.05 mm ., absorption corrections are omitted.

Determination of the structure

The C atoms are numbered in Fig. 1. The molecule is

Fig. 1. Nickel etioporphyrin II.

Fig. 2. Patterson section at $Z=0$. Contoured at arbitrary intervals. Origin is at the center of the square.
initially assumed to be planar and the origin of the cell is placed at a center of symmetry at distances $0,-\frac{1}{4}, \frac{1}{8}$ from site $\overline{4} m 2$. The space group requires that the four Ni atoms occupy position b (or a, equivalent by a change of origin) of multiplicity 4 . The symmetry of the sites is $\overline{4} m 2$. A study of the space group reveals that, within the assumptions made about the shape of the molecule, one only need consider two possible orientations of the molecules. The molecules, related by a 4_{1} axis, must lie parallel to (001) with their Ni atoms at $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right),\left(0, \frac{1}{4}, \frac{3}{8}\right),\left(0, \frac{3}{4}, \frac{5}{8}\right)$, and $\left(\frac{1}{2}, \frac{3}{4}, \frac{7}{8}\right)$. The space-group conditions for the $h k 0$ reflections amount to a halving of a_{1} and a_{2} in basal projection, so that the basally projected molecules must be translationequivalent. The two possible orientations of the molecules differ only by a 45° rotation in the horizontal plane. The pyrrole rings may be directed along the a directions or along the directions of the base diagonals; i.e. either the C_{1} atoms lie upon the 2 -axes (position g) and the N atoms lie in the vertical mirrors (position h), or vice versa.

The basally projected molecules must have symmetry $4 l l$. The heavy Ni atoms and the mean planes

Fig. 4. The structure projected on (100). The C_{5} atoms are half-atoms.
of the molecules lie at heights $\frac{1}{8}, \frac{3}{8}, \frac{5}{8}$, and $\frac{7}{8}$, parallel to (001) with only one molecule at each of these heights. For these reasons the Patterson section at $Z=0$ shows an image of the planar part of the molecule (Fig. 2). The Patterson section also shows that the N atoms occupy sites in the vertical mirrors and the C_{1} atoms lie on the 2 -axes.

Note that, owing to the presence of an ethyl group on each pyrrole ring, the symmetry of the projected molecule (Fig. 1) is not $4 l l$, as required by the space group, but $l l 2$, or lower, depending on the configuration of the C_{5} atoms. Stating the problem in another way: there are only sixteen C_{5} atoms in a space group of multiplicity thirty-two and they cannot be placed into any special position without unreasonable distortion of normal bond lengths and angles. The only alternative is to place $\frac{1}{2} \mathrm{C}_{5}$ in general position. Physically, this means that the molecules are equally divided between two enantiomorphous configurations and that, being randomly distributed, they assume a statistical symmetry $42 m$ (Fig. 3).

Fig. 4 shows the structure projected on (001). The

Fig. 3. Statistical symmetry of the molecule. The C_{5} atoms in the molecule at the right are half-atoms.
fundamental domain selected is bounded by the five planes: $z=0, z=\frac{1}{4}, y=\frac{1}{4}, x=0$, and $x+y=\frac{3}{4}$.
An approximate structure, using rough coordinates obtained from the Patterson section, was used to calculate structure factors, omitting C_{5}, making no temperature corrections, and placing all atoms in the fundamental domain at $z=\frac{1}{8}$. These structure factors yield $R \sim 0.45$, where $R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| \div \Sigma\left|F_{o}\right|$. On the basis of this calculation signs were given to most of the observed F 's and an electron-density section at $z=\frac{1}{8}$, similar to the one shown in Fig. 5, was computed. F 's recalculated using x, y coordinates obtained from the E.D. section, placing all atoms in the fundamental domain at $z=\frac{1}{8}$, excluding zero reflections, omitting C_{5} atoms, and applying an isotropic temperature correction with $B=4.8 \AA^{2}$, yield $R=0.35$.

A plot of $\ln \left(F_{c}^{\circ} / F_{o}\right)$ versus S^{2}, where $S=(\sin \theta) / \lambda$ and F_{c}° is the structure factor calculated using the theoretical scattering factors, is completely unsatis-
factory for obtaining temperature corrections, indicating a pronounced anisotropy; moreover, the magnitude of the temperature corrections indicates a disorder. Numerous attempts, not discussed here, were made to modify the structure within reasonable limits so that these corrections would be reduced to a more reasonable magnitude and to obtain better agreement between observed and calculated F 's. Attempts at improvement of the situation were finally abandoned.

Table 1. Trimetric coordinates of the atoms in the fundamental domain

Atom	x	y	z	Position	
${ }_{8}^{1} \mathrm{Ni}$	$\frac{1}{2}$	4	$\frac{1}{8}$	$4 b$	$\overline{4} m 2$
$1{ }^{1} \mathrm{~N}$	$0 \cdot 375$	1	0.122	16 h	m
$\frac{1}{2} \mathrm{C}_{1}$	$0 \cdot 342$	3-0.342	$\frac{1}{8}$	16 g	2
C_{2}	0.311	0.316	$0 \cdot 119$	$32 i$	1
C_{3}	0.217	$0 \cdot 300$	$0 \cdot 125$	$32 i$	1
C_{4}	$0 \cdot 137$	0.363	$0 \cdot 133$	$32 i$	1
$\left(\frac{1}{2} \mathrm{C}\right)_{5}$	0.089	$0 \cdot 366$	(0.023)	$32 i$	1

Table 2. Calculated and observed structure factors

* High intensity reflections omitted from computation of R.
\dagger Reflections in proximity to shadow of beam catcher, omitted.

Fig. 5. Electron-density section at $z=\frac{1}{8}$. Contoured at intervals of $0.5 \mathrm{e} . \AA^{-3}$, except for Ni which is contoured at intervals of $2 \mathrm{e} . \AA^{-3}$. Zero contour is broken. Origin at 0 .

Difference syntheses proved unsuccessful, apparently due to uncertainty in the scale of F_{o}.

Successive computation of the E.D. section at $z=\frac{1}{8}$ and re-calculation of F failed to reduce R. The form of 'temperature correction' used was predominant in determining the extent of agreement. On the basis of polar-coordinate plots of $\left(1 / S^{2}\right) \ln \left(F_{c}^{\circ} / F_{o}\right)$ versus φ, where φ is the angle between the reciprocallattice vector and the c axis, an ellipsoid of revolution about c was taken as a reasonably good representation of the configuration of B. With this modification, the F 's were calculated and put into the sign determination for an E.D. section at $z=\frac{1}{8}$. The coordinates from this section were used in one further calculation of F. The observed F 's were re-scaled separately for each level and the final section shown in Fig. 5 was computed. The coordinates reported in Table 1 are taken from this section and from line sections passed, parallel to c, through atoms $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$, and N . The x, y coordinates for C_{5} are those which give the best agreement for the $h k 0$ reflections and the z coordinate is chosen to give the best agreement with normal bondlengths and angles. Structure factors calculated from these coordinates are given in Table 2. The following form was used for the correction of scattering factors:

$$
f_{j}=f_{j}^{\circ} \exp \left[-\alpha_{j} S^{2} /\left(1+\beta_{j} \sin \varphi\right)\right]
$$

where f_{j}° is the theoretical scattering factor for atom j. The scattering factor of nickel is corrected for dispersion (Dauben \& Templeton, 1955). The values of α and β used were as follows:

$$
\begin{array}{ll}
\alpha_{\mathrm{Ni}}=10 \cdot 6 \AA^{2} & \beta_{\mathrm{Ni}}=0.90 \\
\alpha_{\mathrm{N}}=12 \cdot 2 & \beta_{\mathrm{N}}=0.43 \\
\alpha_{\mathrm{C}}=13 \cdot 8 & \beta_{\mathrm{C}}=0.43
\end{array}
$$

The value of R is 0.24 for the observed reflections when a scale factor, s, is obtained for each level (see Table 2). The approximate bond lengths obtained from these coordinates are given in Table 3.

Table 3. Interatomic distances

Intramolecular

$\mathrm{Ni}-\mathrm{N}$	$1.84 \pm 0.03 \AA$
$\mathrm{~N}-\mathrm{C}_{2}$	1.35 ± 0.05
$\mathrm{C}_{1}-\mathrm{C}_{2}$	1.43 ± 0.05
$\mathrm{C}_{2}-\mathrm{C}_{3}$	1.40 ± 0.05
$\mathrm{C}_{3}-\mathrm{C}_{3}$	1.47 ± 0.08
$\mathrm{C}_{3}-\mathrm{C}_{4}$	1.50 ± 0.05

Intermolecular

$\mathrm{C}_{2}-\mathrm{C}_{3}^{\prime}$	$3 \cdot 23 \pm 0.05$
$\mathrm{C}_{1}-\mathrm{C}_{4}^{\prime}$	$3 \cdot 25 \pm 0.05$
$\mathrm{C}_{3}-\mathrm{C}_{3}^{\prime}$	$3 \cdot 27 \pm 0.05$

The fact that the peak heights in the electrondensity section are much lower than expected is attributed to the high 'temperature corrections'.

Discussion of the structure

The Fourier syntheses obtained leave little doubt as to the essential correctness of the proposed structure; however, it is evident that a refined structure cannot be obtained from the limited number of reflections. Hope of bringing the value of R down to the magnitude of uncertainty in intensity measurements, about 15%, did not materialize. It was necessary to take anisotropic corrections into consideration almost from the start in order to bring R down to $0 \cdot 24$.

The z coordinates shown in Table 1 indicate a slight departure of the molecule from planarity which cannot be confirmed at this point.

Reflection criteria in the orthorhombic space group $F d d d$ are the same as in the tetragonal space group $F 4_{1} / d d m$ into which $I 4_{1} / a m d$ can be transformed by matrix $110 / \overline{\mathrm{l}} 10 / 001$. The possibility of an orthorhombic pseudo-tetragonal crystal should therefore be considered. $F d d d$ is completely compatible with the symmetry 222 of the molecule.

Due to uncertainties about film shrinkage, a decision as to tetragonality or pseudo-tetragonality could not be reached on the basis of film measurements. An attempt was made to account, in the orthorhombic hypothesis, for the apparent Laue symmetry $4 / m, 2 / m, 2 / m$. The reflections most sensitive to the placing of C_{5}, either on one side of the pyrrole ring or the other, are the tetragonal reflections $h h l$, which become $H 0 L$ in orthorhombic indexing.

The contribution of C_{5} in the proposed orthorhombic structure was calculated by placing that atom in general position in $F d d d$ with coordinates corresponding to those used in $I 4_{1} / a m d$. $F d d d$ generates only one C_{5} for each pyrrole ring. Values of F were calculated for some $H 00$ and $0 H 0$ reflections, but these do not even approximately show the tetragonal symmetry-

Table 4. Calculation of some structure factors in four hypotheses

	Hypothesis	Method of calculation of F	Result
(1)	Tetragonal	$\frac{1}{2} \mathrm{C}_{5}$ placed in general position in $I 4_{1} / a m d$	$R=0.20$
(2)	Orthorhombic pseudotetragonal	C_{5} placed in general position in Fddd using coordinations corresponding to those in (1)	Calculated F 's do not comply with observed Laue symmetry
(3)	Orthorhombic twin	$\left\|F_{c}\right\|=\left(F_{1}^{2}+F_{2}^{2}\right)^{\frac{1}{2}} / \sqrt{2},$ where F_{1} is calculated as in (2) and F_{2} is calculated from the same structure reflected in (110)	$R=0.20$
(4)	Combination (1) and (3)	F taken as average of that calculated from (1) and (3)	$R=0.17$

even when considerably reduced in magnitude by applying the abnormally large 'temperature corrections'. No coordinates for C_{5} could be found which would remove the discrepancies between $F_{H 00}$ and $F_{0 H 0}$.

The above considerations suggest that twinning of the orthorhombic (pseudo-tetragonal) crystal, say by reflection in (ll0), might bring about the required tetragonal symmetry of the reflections. The ortho-rhombic-twin hypothesis implies perfectly ordered domains of at least a few hundred cells, in which the space group $F d d d$ applies.

The tetragonal-crystal hypothesis implies random distribution of right-handed and left-handed molecules even within a single cell.

The structure factors obtained by averaging those from the two hypotheses correspond to a third possibility: a combination of the two, i.e. domains of
orthorhombic individual 1 and of orthorhombic individual 2 with interspersed cells having the random disposition of C_{5}. Structure factors calculated for the various possibilities were compared for twenty reflections (Table 4).

The author wishes to express his appreciation for the guidance and instruction he received from Prof. J. D. H. Donnay and from Dr Gabrielle Donnay. Thanks are also due to Prof. Alsoph H. Corwin and Dr Winslow S. Caughey for their interest in this work.

This study has been made possible by the support of the National Science Foundation.

Reference

Dauben, C. H. \& Templeton, D. H. (1955). Acta Cryst. 8, 841 .

The Crystal Structure of Ruthenocene*

By George L. Hardgrove and David H. Templeton
Department of Chemistry and Radiation Laboratory, University of California, Berkeley, California, U.S.A.

(Received 23 June 1958)
Dicyclopentadienylruthenium, or ruthenocene, crystallizes in the orthorhombic space group Pnma with $a=7 \cdot 13, b=8.99, c=12 \cdot 81 \AA$. There are four $\mathrm{Ru}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ molecules per unit cell. The ruthenium atoms form approximately a face-centered lattice, and the cyclopentadienyl rings lie in an eclipsed configuration with respect to each other about each ruthenium atom. The structure was refined by Fourier and least-squares methods with 791 independent reflections. The rutheniumcarbon distance is $2.21 \AA$ and the carbon-carbon bond distance in the rings averages $1.43 \AA$.

Introduction

X-ray investigation by Fischer and his collaborators (Pfab \& Fischer, 1953, Weiss \& Fischer, 1955) indicated that the dicyclopentadienyl compounds of iron,

[^1]cobalt, nickel, chromium, vanadium and magnesium are isomorphous, crystallizing in space group $P 2_{1} / c$. Dunitz, Orgel \& Rich (1956) have reported a threedimensional analysis of the iron compound. The present paper reports a three-dimensional analysis of dicyclopentadienylruthenium, which unexpectedly was found to have a quite different orthorhombic structure.

[^0]: * Present address: Department of Metallurgical Research Kaiser Aluminum \& Chemical Corp. Spokane 69, Washington.

[^1]: * This research was supported by the U.S. Atomic Energy Commission.

